
Journal o f  Statistical Physics, VoL 22, No. 3, 1980 

A Feigenbaum Sequence of Bifurcations in the Lorenz 
Model 
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For some high values of the Rayleigh number r, the Lorenz model exhibits 
laminar behavior due to the presence of a stable periodic orbit. A detailed 
numerical study shows that, for r decreasing, the turbulent behavior is 
reached via an infinite sequence of bifurcations, whereas for r increasing, 
this is due to a collapse of the stable orbit to a hyperbolic one. The infinite 
sequence of bifurcations is found to be compatible with Feigenbaum's con- 
jecture. 

KEY W O R D S  : Lorenz equat ions  ; tu rbu lence ; st range attractors ; per iod ic  
orbits ; universal  propert ies in sequences of  inf in i te bi furcat ions. 

1. I N T R O D U C T I O N  

Lorenz  ~1~ invest igated the fol lowing r emarkab le  system of  three f i rs t -order  
differential  equat ions ,  represent ing a flow in three-d imens ional  space:  

2 - c r x  + ay  

29 = rx  y x z  (1) 

2 = - b z  + x y  

e, b, and  r being posi t ive constants .  
Numer ica l  tests assuming  e = 10, b = 8/3, and  r vary ing  in cer tain ranges 

yield solut ions  heavi ly  dependent  on the init ial  condi t ion  and  character ized 
by  a chaotic,  extremely r a n d o m  asympto t i c  behavior .  Ruelle  and  Takens  (2~ 
explain  this tu rbulen t  behavior  as arising f rom the presence of  an a t t rac to r  of  
complex  nature,  which is t e rmed  a " s t r a n g e  a t t r ac to r . "  

Recently,  accurate  studies on the Lorenz  system have been repor ted  by 
several  authors ,  including Guckenhe imer ,  (3~ Marsden  and McCracken ,  (4~ 

1 Istituto Matematico, Universith di Modena, Modena, Italy. 
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Ruelle, (5~ Williams, (6~ and, particularly, Lanford, (7~ who performed a detailed 
and exhaustive analysis of the strange attractor structure. 

In Ref. 8 Henon studies the simple mapping of the plane 

X,+ 1 = y~ + 1 - -  ax, 2, Y i + l  = bx~ 

which has the same essential features as the Lorenz system. Actually, numeri- 
cal tests for a = 1.4 and b = 0.3 show that, depending on the initial point 
(x0, Y0), the sequence of points obtained by iterating the mapping either 
diverges to infinity or tends toward a strange attractor which appears to be a 
one-dimensional manifold times a Cantor set. The Henon model has been 
further examined by several workers, among them Feit (9~ and Curry. (1~ 

So far the Lorenz and Henon models yield the best-known attempts at 
interpreting turbulence through the solution of evolution equations having a 
sensitive dependence on initial conditions. 

In addition, a third model has been recently suggested by Boldrighini 
and Franceschini (11~ and Franceschini and Tebaldi, (12~ specified by the 
following equations: 

21 = - 2 x l  + 4X2X3 + 4X4X5 

22 = - 9 x 2  + 3xlx3  

23 = - 5 x a  - 7x lx2  + r (2) 

24 = - - 5 X ~  - -  X l X 5  

2 5  = - - X 5  - -  3 X l X 4  

which have been obtained through a suitable five-mode truncation of the 
Navier-Stokes equations for a two-dimensional, incompressible fluid on a 
torus. In a certain range of the Reynolds number r, this system shows a 
turbulent behavior quite similar to that of the Lorenz model, which is due to 
the presence of two symmetrically placed strange attractors. Two distinctive 
features appear in this model: 

(i) The presence of two (presumably) infinite sequences of orbits 
characterized by a period which doubles at each bifurcation. Moreover, 
these sequences are strictly related to the mechanism responsible for the 
generation of the strange attractor. 

(ii) A mechanism which makes the turbulence disappear. One might 
think that this could arise because of the shrinking of the strange attractor to a 
periodic orbit, but it is in fact related to the simultaneous appearance of a 
stable orbit and a hyperbolic one on the same attractive manifold containing 
the strange attractor. 

Concerning the pair of infinite sequences of bifurcations, a remarkable 
property has been verified, i.e., that they are compatible with a theory recently 
developed by Feigenbaum. (la~ This theory is related to a large class of 
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mappings of the interval onto itself, exhibiting an infinite sequence of 
bifurcations by varying a parameter A. We briefly outline here the fundamental 
point of Feigenbaum's theory, while we refer to Ref. 13 for further details, 
and to Derrida e t  al. ~I~ and Collet e t  al.  ~I~ for later generalizations of 
Feigenbaum's work. Let A~, A 2 . . . . .  A . . . . .  be the bifurcation points of an 
infinite sequence of bifurcations; then (see the above references for the con- 
ditions under which this relation holds) 

lim A~ - A i _ 1 

Feigenbaum's conjecture and its extensions to higher dimensional systems 
also have been successfully checked within the framework of Henon's model 
too, (14~ where the sequence of stable periods 2 ~ bifurcates with a velocity 3 
which is the same as that found in the case of the interval mappings. 

In this paper we report some numerical results obtained on the Lorenz 
model. The aim of this work is to indicate that the same phenomena character- 
izing the system (2) are present in this model too. We exhibit an interval 
[R~, R0] where a sequence of infinitely many bifurcations take place and 
study their compatibility with Feigenbaum's theory. 

2. N U M E R I C A L  R E S U L T S  

Assuming the Lorenz system in the form 

)/" = - a X  + cry 

= - a X -  Y -  X Z  ( ~ =  10, b = 8/3) 

2 =  - b Z -  R + Jfg 

(3) 

obtained from the standard one (1) by changing the origin (x -+ X, y -+ Y, 
z - +  Z + c~ + r) and letting R = b(c~ + r), we can easily check numerically 
that for R = 294 any randomly chosen initial point tends to one of two 
symmetric periodic orbits. 2 Also it is easily verifiable that the Lorenz system 
retains the laminar behavior in a very narrow range of values of R: as a 
matter of fact, for two close values of R, for instance R = 290 and R = 300, 
we have clearly turbulent motion. 

The computational techniques previously employed in Ref. 12, essen- 
tially based on Newton's method for searching periodic orbits and on 

2 The presence of such a pair of orbits is due to the symmetry (if, Y, Z) ~-+ ( -  X0 - Y, Z) 
of the Lorenz equations. In the following we will consider only one of the two orbits, 
understanding that any statement holds unchanged for both. 
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Liapunov ' s  criterion for examining their stability, allow us to study the two 
transi t ions f rom periodic to turbulent  mot ion.  

Denot ing  by F0 the attractive periodic orbit  found for  R = 294 (Fig. 1), 
we get the following results. 

(i) For  increasing R, Fo disappears  for  R = Ro = 295.453 . . . .  An 
analysis of  the eigenvalues of  the L iapunov  matr ix  relative to the Poincard 
map  shows that  Fo is always stable. An eigenvalue tends to 1 for  R tending to 
Ro. One can easily verify that  the d isappearance  of  I? o is due to the collapse 
to a hyperbol ic  orbit  (Fig. 2). 

(ii) Fo r  decreasing R, Fo becomes unstable for R = R1 = 293.27 . . . .  
since an eigenvalue of  the Poincard map  crosses the unit  circle at - 1 .  As 
predicted by the bifurcat ion theory (see, for  instance, Ref. 2), a new stable 
orbit  Pl (Fig. 3) appears ,  having a period which is twice that  corresponding 
to I'o. The orbit  P~ becomes unstable at the bifurcation point  R2 = 292.342 . . . .  
where a new stable orbit  I'2 appears  having a per iod which is again doubled 
(Fig. 4). This sequence of  orbit  bifurcat ions continues and we find numerical  
evidence for Pa, P~, and  F5 orbits by determining with sufficient accuracy the 
critical points  Ra = 292 .1256 . . . ,  R4 = 292.07823 . . . .  and R5 = 292.06808 

>- 
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Fig. 1. Projections of the stable periodic orbit 1~o found for R = 294. Two crosses indi- 
cate the two fixed points (_+ [-b(a + 1) + R] 1/2, + [-b(~r + 1) + R] 1~2, - a  - 1). 
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Fig. 2. Projection of the stable ( - - )  and hyperbolic ( - - - )  orbits for R = ;!95. The two 
orbits appear to be very close to each other. 
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Fig. 3. Projection of the stable orbit F1 for R = 292.50. 
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Fig. 4. Projection of the stable orbit s for R = 292.15. 

I n  Tab le  I we collect  m o s t  s ignif icant  resul ts ,  where  Ro + is the m i n i m u m  

va lue  of  R tha t  ann ih i l a t e s  Uo; R0 -  is the m a x i m u m  va lue  o f  R tha t  a l lows a 

s table  Po; To is the  pe r iod  of  1"o for  R = R o - ;  Rz +, i = 1 . . . . .  5, is the 
m i n i m u m  value  of  R tha t  makes  the o rb i t  P~_ 1 stable,  e.g., the  e igenva lue  of  
the  Po inca r6  m a p  tha t  t ends  to cross the un i t  circle is still greater  t h a n  - 1 ; 

R~-,  i = 1 . . . . .  5, is the m a x i m u m  va lue  of  R tha t  makes  U~_~ a l ready  un -  

stable,  e.g., the  e igenvalue  is less t h a n  - 1 ; T~, i = 1 , . . . ,  5, is the  pe r iod  of  

s ~ for  R = R~. 

Table I 

0 295.454 295.453 1.094292 
1 293.280 293.278 1.099559 
2 292.3427 292.3426 2.203567 
3 292.12565 292.12563 4.409210 
4 292.078240 292.078230 8.819327 
5 292.068087 292.068085 17.639042 

i R~ + R~- T~ 
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Assuming  R~ = (R~ + + Ri-) /2  and comput ing  the 8~ = (R,-1 - &)/  
(R, - R~ ~1) rat ios ,  i = 1 . . . .  , 4 ,  with es t imated  errors  

8~[/XR~_I + /XR~ • + Z ,R~I ) ,  R~ + - & -  

we obta in  
81 = 2.322 + 0.005, 82 = 4.315 + 0.007 
8a = 4.578 • 0.003, 83 = 4.671 + 0.005 

which clearly agree with the l imit  value 8 = 4 . 6 6 9 . . .  as given by Feigen-  

baum.  
I t  seems very l ikely indeed tha t  the P~ sequence is infinite, so tha t  one 

can tentat ively es t imate  the crit ical value R~ in agreement  with Fe igenbaum ' s  
conjecture and with the numerica l  results repor ted  above.  Therefore  one gets 

R~ ~ Ra + R s -  R4 R s -  R_.4 + 82 + . . .  ~ 292.065320 

F o r  R < R~o and R > R0, the Lorenz  system a l ready exhibits tu rbulen t  
behavior ,  as shown in Figs.  5 and 6, respectively,  relative to R = 292.00 and 
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Fig. 5. Projection of the flow of a randomly chosen initial point within the time interval 
(100, 150) for R = 292.00. The motion takes place in a neighborhood of the infinite 
unstable orbits of one of the two sequences F~. 
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Fig. 6. Projection of the flow of a randomly chosen initial point within the time interval 
(100, 150) for R = 295.50. This picture clearly shows a strange attractor. 

R = 295.50, e.g., to two values of R rather close to the two critical points. 
For R = 292.00 the motion could appear to be not completely chaotic: any 
randomly chosen initial point is attracted in a region surrounding the infinitely 
many unstable orbits of one of the two sequences F~ and therein trapped. The 
point can therefore move only in a neighborhood of these orbits, exactly as in 
Ref. 12 for the analogous case. An analysis carried out through the Poincar6 
map, following the same lines as in Ref. 12, which deals with two similar 
transitions from laminar to turbulent behavior, does not seem essential in the 
present case. As a matter of  fact, it appears quite clear that these transitions 
occur with a phenomenology completely analogous to that already found 
through the system (2). 

Finally, we briefly sketch the numerical methods employed to integrate 
the system (3). All the computed values reported above have been obtained 
by means of a fourth-order Runge-Kutta method (Butcher's method), 
imposing an error less than 10-5 in closing each orbit~ Several computations 
have also been carried out by a third-order Runge-Kutta method. They 
provide results substantially equivalent to those reported above, the only 
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difference being slightly translated bifurcation points (the differences R~ + z - R~ 
were virtually invariant with respect to the integration method). 

3. C O N C L U S I O N S  

In the Lorenz model two important phenomena occur, which appear to 
be rather relevant, i.e., a sequence of infinite bifurcations and collapsing 
stable and hyperbolic orbits. 

First, it is evident that these phenomena and the appearance (or dis- 
appearance) of turbulent behavior are strictly related. Taking into account 
the analysis reported in Ref. 12, one could reasonably infer that an attractive 
two-dimensional manifold also exists within the Lorenz model, with some 
singularities whose nature presumably changes as R varies. All phenomena 
shown by this model and investigated here could take place on that manifold. 

Remarkably, the infinite sequence of bifurcations has been found to be 
compatible with Feigenbaum's theory. The fact that this theory is verified in 
the Lorenz model appears to be significant. It yields a second example in 
which the solutions of a first-order differential system have properties 
analogous to those of the map of an interval onto itself. 

It is known that in the Lorenz model, as R keeps being increased starting 
from R = b(cr + 470/19) ~ 92.63, then, as Lanford states, (7~ " the  system 
appears to undergo a highly complicated sequence of bifurcations: for some 
R's there is an attracting periodic solution and for others a strange attractor." 
It seems therefore not unreasonable to assume the existence, for different 
ranges of the Rayleigh number, of further sequences of infinite periodic 
orbits, showing a phenomenology completely analogous to the present one. 

In any event there are several points which probably need deeper analysis. 
Clearly, there is still some way to go and other numerical investigations appear 
necessary to throw light on the interesting aspects of this field. 

Note. After the completion of this work, I was informed by P. Collet 
about a preprint by Robbins (16~ in which another infinite sequence of bifurca- 
tions is found in the Lorenz model. Similar results have been found also by 
V. I. Yudovich (private communication via C. Boldrighini). 
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